Erythromycin estolate

Alias: NSC 263364 NSC-263364 NSC263364 Ilosone Lauromicina
Cat No.:V20704 Purity: ≥98%
Erythromycinestolateis a potent and broad-spectrum antibioticbelongingto a group of drugs called macrolide antibiotics, it is produced by actinomyceteStreptomyces erythreus and isan inhibitor of protein translation and mammalian mRNA splicing.
Erythromycin estolate Chemical Structure CAS No.: 3521-62-8
Product category: Bacterial
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1g
2g
5g
10g
25g
Other Sizes

Other Forms of Erythromycin estolate:

  • EM-523 (Erythromycin A enol ether )
  • Erythromycin A dihydrate
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Erythromycin estolate is a potent and broad-spectrum antibiotic belonging to a group of drugs called macrolide antibiotics, it is produced by actinomycete Streptomyces erythreus and is an inhibitor of protein translation and mammalian mRNA splicing. It acts by binding to bacterial 50S ribosomal subunits and inhibits RNA-dependent protein synthesis by blockage of transpeptidation and/or translocation reactions, without affecting synthesis of nucleic acid, thus inhibiting growth of gram negative and gram positiove bacteria. Erythromycin is used to treat certain infections caused by bacteria, such as infections of the respiratory tract, including bronchitis, pneumonia, Legionnaires' disease (a type of lung infection), and pertussis (whooping cough; a serious infection that can cause severe coughing); diphtheria (a serious infection in the throat); sexually transmitted diseases (STD), including syphilis; and ear, intestine, gynecological, urinary tract, and skin infections.

Biological Activity I Assay Protocols (From Reference)
Targets
Macrolide antibiotic
ln Vitro
Azithromycin, an azalide analog of erythromycin was assayed for its in vitro activity against multidrug-resistant Plasmodium falciparum K1 strain by measuring the 3H-hypoxanthine incorporation. Azithromycin caused inhibitory effects on the parasite growth with IC50 and IC90 values of 8.4+/-1.2 microM and 26.0+/-0.9 microM, respectively. Erythromycin inhibited growth of P. falciparum with IC50 and IC90 values of 58.2+/-7.7 microM and 104.0+/-10.8 microM, respectively. The activity of antimalarial drugs in combination with azithromycin or erythromycin against P. falciparum K1 were compared. Combinations of chloroquine with azithromycin or erythromycin showed synergistic effects against parasite growth in vitro. Combinations of quinine-azithromycin and quinine-erythromycin showed potentiation. Additive effects were observed in mefloquine-azithromycin and mefloquine-erythromycin combinations. Similar results were also produced by pyronaridine in combination with azithromycin or erythromycin. However, artesunate-azithromycin and artesunate-erythromycin combinations had antagonistic effects. The in vitro data suggest that azithromycin and erythromycin will have clinical utility in combination with chloroquine and quinine. The worldwide spread of chloroquine-resistant P. falciparum might inhibit the ability to treat malaria patients with chloroquine-azithromycin and chloroquine-erythromycin in areas of drug-resistant. The best drug combinations against multidrug-resistant P. falciparum are quinine-azithromycin and quinine-erythromycin [2].
ln Vivo
Erythromycin estolate (EE), a macrolide antibiotic, has caused hepatotoxicity both in human and experimental animals. The objective of this study was to integrate general toxicology, transcriptomics, and metabonomics approaches to determine the mechanisms of EE-induced liver injury. Histopathological examinations unveiled dose-dependent hydropicdegenerationof hepatocytes after EE administration. Further biochemical analysis of treated rats confirmed that cholestasis and oxidative stress were induced by EE treatments. Microarray analysis of the livers from EE-treated rats showed that differentially expressed genes were enriched in the ABC transporters, cell cycle, and p53 signaling pathways. Metabonomics analysis revealed that EE exposure could lead to disturbances in energy metabolism, amino acid metabolism, lipid metabolism, and nucleotide metabolism, which may be attributable to EE toxicological effects on the liver through oxidative stress. 5-Oxoproline may be used as a biomarker of EE-induced liver injury. More importantly, the integrated analysis of transcriptomics and metabonomics datasets demonstrated that the induction of ABC transporters pathway severed as an anti-cholestatic adaptive mechanism in EE-induced cholestasis. In addition, EE-induced liver injury was also related to alteration in glycogen and sucrose metabolism, arachidonic acid metabolism, and linoleic acid metabolism pathways [4].
References

[1].Gribble MJ, et al. Erythromycin. Med Clin North Am. 1982 Jan;66(1):79-89.

[2].Nakornchai S, et al. Activity of azithromycin or erythromycin in combination with antimalarial drugs against multidrug-resistant Plasmodium falciparum in vitro. Acta Trop. 2006 Dec;100(3):185-91. Epub 2006 Nov 28.

[3]. Blood, tissue, and intracellular concentrations of erythromycin and its metabolite anhydroerythromycin during and after therapy. Antimicrob Agents Chemother. 2012 Feb;56(2):1059-64.

[4]. Integrated systems toxicology approaches identified the possible involvement of ABC transporters pathway in erythromycin estolate-induced liver injury in rat. Food Chem Toxicol. 2014 Mar;65:343-55.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C52H97NO18S
Molecular Weight
1056.3875
Exact Mass
1055.64263
Elemental Analysis
C, 59.12; H, 9.26; N, 1.33; O, 27.26; S, 3.03
CAS #
3521-62-8
Related CAS #

114-07-8 (free); 3521-62-8 (estolate); 16667-03-1 (glutamate); 30010-41-4 (aspartate); 7704-67-8 (thiocyante); 1264-62-6 (Ethylsuccinate); 914076-30-5 (ethyl carbonate); 55224-05-0 (cyclocarbonate); 33396-29-1 (Erythromycin A enol ether); 59319-72-1 (Erythromycin A dihydrate)

Appearance
White to off-white solid powder
Source
Streptomyces erythrus
LogP
7.55
tPSA
271.96
SMILES
CCCCCCCCCCCCOS(=O)(O)=O.CC[C@H]1OC([C@@H]([C@H]([C@@H]([C@H]([C@](O)(C[C@H](C([C@@H]([C@H]([C@@]1(O)C)O)C)=O)C)C)O[C@@H]2O[C@@H](C[C@H](N(C)C)[C@H]2OC(CC)=O)C)C)O[C@H]3C[C@@](OC)([C@H]([C@@H](O3)C)O)C)C)=O
InChi Key
AWMFUEJKWXESNL-JZBHMOKNSA-N
InChi Code
InChI=1S/C40H71NO14.C12H26O4S/c1-15-27-40(11,48)33(44)22(5)30(43)20(3)18-38(9,47)35(55-37-32(53-28(42)16-2)26(41(12)13)17-21(4)50-37)23(6)31(24(7)36(46)52-27)54-29-19-39(10,49-14)34(45)25(8)51-291-2-3-4-5-6-7-8-9-10-11-12-16-17(13,14)15/h20-27,29,31-35,37,44-45,47-48H,15-19H2,1-14H32-12H2,1H3,(H,13,14,15)/t20-,21-,22+,23+,24-,25+,26+,27-,29+,31+,32-,33-,34+,35-,37+,38-,39-,40-/m1./s1
Chemical Name
(2S,3R,4S,6R)-4-(dimethylamino)-2-(((3R,4S,5S,6R,7R,9R,11R,12R,13S,14R)-14-ethyl-7,12,13-trihydroxy-4-(((2R,4R,5S,6S)-5-hydroxy-4-methoxy-4,6-dimethyltetrahydro-2H-pyran-2-yl)oxy)-3,5,7,9,11,13-hexamethyl-2,10-dioxooxacyclotetradecan-6-yl)oxy)-6-methyltetrahydro-2H-pyran-3-yl propionate dodecyl sulfate
Synonyms
NSC 263364 NSC-263364 NSC263364 Ilosone Lauromicina
HS Tariff Code
2934.99.03.00
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~94.66 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (1.97 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (1.97 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (1.97 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.9466 mL 4.7331 mL 9.4662 mL
5 mM 0.1893 mL 0.9466 mL 1.8932 mL
10 mM 0.0947 mL 0.4733 mL 0.9466 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top